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Abstract

In the current landscape of language model research, larger
models, larger datasets and more compute seems to be the
only way to advance towards intelligence. While there have
been extensive studies of scaling laws and models’ scal-
ing behaviors, the effect of scale on a model’s social biases
and stereotyping tendencies has received less attention. In
this study, we explore the influence of model scale and pre-
training data on its learnt social biases. We focus on BERT—
an extremely popular language model—and investigate bi-
ases as they show up during language modeling (upstream),
as well as during classification applications after fine-tuning
(downstream). Our experiments on four architecture sizes of
BERT demonstrate that pre-training data substantially influ-
ences how upstream biases evolve with model scale. With in-
creasing scale, models pre-trained on large internet scrapes
like Common Crawl exhibit higher toxicity, whereas models
pre-trained on moderated data sources like Wikipedia show
greater gender stereotypes. However, downstream biases gen-
erally decrease with increasing model scale, irrespective of
the pre-training data. Our results highlight the qualitative role
of pre-training data in the biased behavior of language mod-
els, an often overlooked aspect in the study of scale. Through
a detailed case study of BERT, we shed light on the com-
plex interplay of data and model scale, and investigate how it
translates to concrete biases.

Introduction
Large Language Models (LLMs) continue to grow in size
at a remarkable rate, with technology companies investing
millions in infrastructure to produce ever-larger and more
general purpose models. Modern open weight models like
LLaMA, Gemini and Falcon regularly have tens of billions
of parameters, showcasing noteworthy capabilities across a
range of natural language processing applications.

To investigate the performance of LLMs in terms of
model parameters, training data size, and compute re-
sources, a rich literature in empirical scaling laws (Hernan-
dez et al. 2021; Kaplan et al. 2020) has emerged, which sug-
gests that bigger is indeed better (in terms of loss). Recent
work on scaling laws has also led to a more comprehensive
understanding on the tradeoffs between data size and model
parameters with a fixed compute budget (Hoffmann et al.
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2022). Given the pace of LLM development and the foun-
dational role of scale, studying changes in model behavior
with size remains a pressing research problem.

One crucial question that has received less attention, how-
ever, is how model scale influences social biases. LLMs in-
herently absorb societal biases and harmful stereotypes from
data during both pre-training and task-specific fine-tuning.
These biases manifest as intrinsic biases within the embed-
ding space, leading to representational harms and stereo-
typing (Nangia et al. 2020; Nadeem, Bethke, and Reddy
2020; May et al. 2019; Kurita et al. 2019), and extrinsic
biases leading to allocative harms (Barocas et al. 2017)
in downstream predictions (Gehman et al. 2020; Garimella
et al. 2019; Blodgett, Wei, and O’Connor 2018). Prior work
has shown that pre-trained models can generate toxic lan-
guage (Gehman et al. 2020), can have disparities in hate
speech classification (Sap et al. 2019), can perpetuate anti-
Muslim bias in text generation (Abid, Farooqi, and Zou
2021), can rely on racial biases even for high stake use cases
such as clinical notes (Zhang et al. 2020), among other fail-
ures.

The growing scale of LLMs has been driven, in part, due
to their popularity in commercially successful chat applica-
tions (e.g. ChatGPT), as well as their instruction following
capabilities (Wei et al. 2021), making them useful for a va-
riety of tasks. Chat and prompting applications tend to use
autoregressive, decoder-only Transformer models (e.g. GPT-
4, LLaMA, PaLM). While these models are at the cutting
edge, they are often challenging to deploy in many cases, re-
quiring massive compute resources and improvised prompt
engineering. In contrast, encoder-decoder (e.g. T5, BART)
and encoder-only (e.g. BERT, RoBERTa) Transformer mod-
els trained on a Masked Language Modeling (MLM) objec-
tive are often lighter, and remain workhorses for NLP appli-
cations in industry. These models continue to be relevant for
applications such as summarization, semantic search, senti-
ment analysis, and a wide array of classification tasks after
fine-tuning, as evidenced by their continued success in pub-
lic machine learning competitions (Holmes et al. 2024; King
et al. 2023). These models are also affected by biases in the
training data similar to autoregressive LLMs, both during
pre-training and during the task-specific fine-tuning process.
In this study, we take a step back from the outsize discourse
on autoregressive models and focus on encoder-only LLMs
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(also referred to as MLMs here) due to their widespread use.
We present a detailed case study of the influence of scale
and data on social biases when pre-training BERT (Devlin
et al. 2018), a seminal and extremely popular LLM. We fo-
cus on one model family specifically to control for variance
in model architecture when changing number of parameters.

How could scale influence bias? The prevailing wisdom
is that pre-trained LLMs should get more biased as they get
bigger. One intuition for this comes directly from the scal-
ing laws themselves. Models often learn harmful artifacts
in the data, and since bigger models fit the data better, bi-
ases can aggravate as model size increases. But there are also
cases when biases plateau or even decrease with scale (Sri-
vastava et al. 2022), possibly because scale helps the model
learn more reliable task-specific rules without overly relying
on shortcut heuristics (McCoy, Pavlick, and Linzen 2019;
Bhargava, Drozd, and Rogers 2021).

Indeed, there are good reasons for why bias should not
in general increase with scale, and in fact, should decrease
with scale in certain cases. First, MLMs such as BERT are
known to use shortcut heuristics rather than actually learning
more robust heuristics for the downstream task. For exam-
ple, models fine-tuned for natural language inference (NLI)
use the shortcut that when the premise has a high word over-
lap with the conclusion, the model uses this as a heuristic
to predict entailment (McCoy, Pavlick, and Linzen 2019).
It is likely that something like gender bias is a shortcut
heuristic that the model might use to perform a task. And
while scale does not solve the problem of shortcut heuris-
tics in NLI, it helps a lot: the jump from the smallest to
largest BERT model gets a 23% absolute increase in accu-
racy on HANS, and a jump from BERT-base to RoBERTa-
base (more data) results in a 19% improvement (Bhargava,
Drozd, and Rogers 2021). Similarly, we might hope that
scale will help the model learn more reliable task specific
rules in favor of biases like gender bias; and so for this rea-
son, a model might actually get less biased with scale. Sec-
ond, many bias and fairness measures, such as equal odds
and equal opportunity are functions of the raw statistics that
contribute to accuracy, such as false positive rates and false
negative rates (Garg, Villasenor, and Foggo 2020). More-
over, downstream allocative harms are frequently measured
by these statistics directly. So although scaling laws hold that
training loss decreases with scale, indicating that the model
might overfit to the bias; at the same time, test accuracy also
increases with scale. For this reason, we would expect that
fairness measures based on accuracy statistics to actually
improve with scale as the accuracy increases. Third, scale
isn’t the only important factor, the type of data can matter.
Different data has different biases. For example, biographies
about notable figures on Wikipedia are skewed towards men
over women (Tripodi 2023), and large web scrapes like the
common-crawl are likely more diverse in overall topics cov-
ered, but also much more toxic.

Our contributions. We study MLMs to see how social
biases evolve as we vary model scale. We pre-train four
architecture sizes of BERT (mini, small, medium and
base, i.e., up to 110M parameters). A core focus of our

study is the pre-training dataset. We experiment with En-
glish Wikipedia and the CC-100 English subset of Common
Crawl. For each model size and type of training data, we
compute biases in the representations upstream and perfor-
mance disparities downstream, leveraging specific measures
of language biases from prior research (Steed et al. 2022).
We measure upstream bias along two dimensions: dispari-
ties in gender pronoun probabilities and sentiment of gen-
erated text; downstream impact is measured by fine-tuning
models on a toxicity classification task, where we evaluate
differences is false positive rates across a diverse set of de-
mographic groups from prior work (Dixon et al. 2018) (e.g.
Muslim, gay etc.)

Our findings underscore the crucial role of pre-training
data as models increase in size. For models pre-trained with
CC-100, upstream biases generally increase with model size.
Conversely, models pre-trained on Wikipedia show greater
gender stereotyping as models increase in size. In both cases,
we find that downstream biases decrease with increasing
model size. However, models consistently associate certain
identities such as gay and homosexual with toxicity, inde-
pendent of parameter size or type of pre-training data. This
finding aligns with prior work Steed et al. (2022); Panda
et al. (2022), that downstream biases are largely influenced
by biased artifacts in the fine-tuning dataset, and not the pre-
training data.

We then inspect the datasets themselves to identify the
reasons of observed biases, and find that indeed CC-100
contains more negative sentiment towards our measured
identity groups compared to Wikipedia, which is picked up
by larger models. We also find evidence of Wikipedia en-
coding more male pronoun co-occurences in articles related
to occupations, which might explain the increased gender
disparities in models pre-trained on Wikipedia.

In summary, we conduct a detailed case study through
BERT—an extremely popular model—and investigate the
impact of pre-training data, model scale, and observed so-
cial biases, both in terms of the masked language modeling
task, as well as in downstream classification settings.

Related Work
Our study broadly relates to three strands in the literature:
fairness and auditing of machine learning algorithms in gen-
eral, the study of biases in natural language processing more
specifically, and scaling laws for large language models.

First, a rich literature in computer science investigates is-
sues of fairness in machine learning (Dwork et al. 2012;
Barocas, Hardt, and Narayanan 2023), measuring the differ-
ent types of harms these systems can have—such as denigra-
tion, stereotyping, differential quality of service etc. (Baro-
cas et al. 2017; Weerts 2021). Notably, prior work has doc-
umented racial and gender disparities for commercial gen-
der classification systems (Buolamwini and Gebru 2018),
racial disparities in criminal recidivism prediction (Angwin
et al. 2022), gender disparities in the delivery of job adver-
tising (Datta, Tschantz, and Datta 2014; Ali et al. 2019),
among others. Many of these studies only rely on “black
box” access to machine learning systems, and have to con-
duct clever audits to measure disparate outcomes (Metaxa



et al. 2021). Our work is connected to this literature in its
goal of measuring inadvertent harms of a machine learning
system, albeit with “white box” access to the model’s output
probabilities and weights.

Within natural language processing (NLP) specifically,
prior work has also discussed biased and disparate outcomes
for users. Blodgett, Green, and O’Connor (2016) was one of
the earliest works documenting racial disparities, showing
how dependency parsing tools struggle on text for African
American English on Twitter. Similarly, Caliskan, Bryson,
and Narayanan (2017) demonstrated how word embeddings
learnt from text corpora can contain gender biases. In the
context of large language models—which power most of
modern NLP—recent work has documented negative as-
sociations for people with disabilities (Hutchinson et al.
2020), anti-Muslim bias (Abid, Farooqi, and Zou 2021), and
a general propensity to generate toxic text (Gehman et al.
2020). There have also been efforts to construct benchmarks
that can yield repeatable measurements of bias across many
different language models. This includes benchmarks such
as WinoBias for coreference resolution (Zhao et al. 2018),
BBQ and UNQOVER for question-answering (Parrish et al.
2021; Li et al. 2020), BBNLI for natural language infer-
ence (Baldini et al. 2023), StereoSet for measuring stereo-
typical associations (Nadeem, Bethke, and Reddy 2020),
among others. Further, large benchmarking efforts such as
BIG-bench (Srivastava et al. 2022) have been able to pro-
vide insights into the relationship between model scale and
performance on bias benchmarks, which is one of the ob-
jectives of our study. We now know from Srivastava et al.
(2022) that for auto-regressive models, bias (as measured
via UNQOVER, BBQ etc.) typically increases in ambiguous
prompts, and that it can decrease for narrow, unambiguous
prompts. We similarly study the relation of bias with scale,
but in the context of MLM models, which have distinct up-
stream and downstream applications, and with an added fo-
cus on the pre-training dataset used. Closest to our study
is Steed et al. (2022)’s work on upstream and downstream
biases for MLMs, in which they investigate the bias trans-
fer hypothesis—can upstream debiasing methods improve
disparities in downstream performance? They find that up-
stream mitigation does little to address downstream biases,
and that downstream disparities are better explained by bi-
ases in the fine-tuning data.

In parallel, empirical scaling laws related to LLM perfor-
mance have been the subject of extensive investigation in
recent research (Hestness et al. 2017; Kaplan et al. 2020).
These studies have found a power-law scaling relationships
with model size, dataset size, and computational resources,
i.e. an increase in either almost always leads to a decrease
in loss. Recently, Hoffmann et al. (2022) have also led to a
clearer understanding of the tradeoffs between training data
size (number of tokens) and model parameters, yielding a
unified formula for compute-optimal training, which has al-
ready been applied to specific model settings (Clark et al.
2022; Gordon, Duh, and Kaplan 2021; Henighan et al. 2020;
Tay et al. 2022). However, it is noteworthy that the scala-
bility of LLMs does not universally translate to improved
performance across all downstream tasks, as demonstrated

by Ganguli et al. (2022). Similarly, recent work by Wei et al.
(2022) highlights emergent abilities unique to larger mod-
els not predicted by traditional scaling laws. In response to
work in scaling laws, there has also been pushback from crit-
ics. Notably, Bender et al. (2021) highlighted the rising en-
vironmental and financial costs of model pre-training, and
the lack of diversity in training data. Closely related to our
study, Birhane et al. (2023) study scaling laws in the context
of hateful content present in the LAION family of datasets,
popularly used to pre-train text to image diffusion models.
They find that as data scale increases, the tendency of mod-
els to associate Black faces with categories like “criminal”
can significantly increase.

Our work lies at the intersection of these research threads.
We contribute to the ongoing practice of measuring the ad-
verse outcomes of machine learning systems. Our work also
contributes to ongoing work on scaling laws, with a specific
focus on bias, and how it is picked up from pre-training data.

Methods
In this section, we cover the models we train, our training
configuration, the datasets used to train these models, and
the metrics we use to measure bias.

Models
We experiment with four architecture sizes of BERT: BERT-
Mini, BERT-Small, BERT-Medium, BERT-Base. While
originally introduced in the context of model distilla-
tion (Turc et al. 2019), we find that these models provide
a good testbed for experimenting with model scale, while
holding the architecture constant. Table 1 shows the number
of layers, hidden embedding size, and the number of param-
eters in each case. Following (Turc et al. 2019), we fix the
number of attention heads to H/64, where H is the hidden
embedding size. We use the publicly available architecture
implementations of miniature BERT architectures via Hug-
gingFace1.

Model L H Parameters
BERT-Mini 4 256 11.3M
BERT-Small 4 512 29.1M
BERT-Medium 8 512 41.7M
BERT-Base 12 768 110.1M

Table 1: BERT architecture specifications for our models.
We vary number of layers (L) and hidden embedding size
(H).

Pre-Training Data
For each model size, we pre-train on three different datasets,
on a masked language modeling objective: (a) CC-100-EN:
English subset of Common Crawl (Conneau et al. 2019), (b)
English Wikipedia, and (c) a combination of CC-100-EN
and Wikipedia in a multi-task setup. Text on Wikipedia data

1BERT-Medium, e.g. https://huggingface.co/
google/bert_uncased_L-8_H-512_A-8



is curated by a set of editors, and often goes through mod-
eration, quality control and edits. Common Crawl (Wenzek
et al. 2019), on the other hand, is a massive unconstrained
crawl of the internet and therefore, is very likely to include
stereotypes as well as toxic and abusive statements (Luc-
cioni and Viviano 2021; Gehman et al. 2020). Our choice
of these datasets for pre-training is based on these content
differences, such that we can contrast language biases after
model pre-training.

Pre-training configuration. For each model size in Ta-
ble 1, we pre-train the model for 8, 000 training steps on the
chosen pre-training data. We seed our data shuffling consis-
tently to make sure that each model gets exposed to the same
set of tokens from the data, which prior work has shown to
be fundamental in models’ scaling behavior (Kaplan et al.
2020; Hoffmann et al. 2022). When combining datasets, we
run combined training with the two datasets interleaved, i.e.,
one update step on CC-100-EN, followed by one update step
on Wikipedia. As a result, each mini-batch consists only of
data from one of the pre-training datasets, and Wikipedia is
up-sampled relative to CC-100-EN.

Metrics
We use a series of metrics from prior work to measure bi-
ases at different points. First, we evaluate biases intrinsic to
the model itself, i.e. relating to the masked language model-
ing task it’s trained on. Second, we fine-tune each model for
a downstream classification task and evaluate how its scale
and pre-training data affects false positive rates across demo-
graphic groups. Third, we use linguistic analysis on the pre-
training datasets themselves to understand the provenance of
our observed biases. Here, we describe each of these metrics
in detail.

Upstream bias metrics. We use two metrics from prior
work (Steed et al. 2022) to evaluate upstream biases in our
pre-trained models.

First, we evaluate gender bias using an extension of
log probability bias score from Kurita et al. (2019). We
specifically use the version of this metric used in Steed
et al. (2022), where templates are constructed for a list of
28 professions taken from the Bias in Bios dataset (De-
Arteaga et al. 2019). The original dataset is built from
Common Crawl, which includes over 400,000 online bi-
ographies from 28 occupations. The dataset does not in-
clude self-reported gender; we refer to the pronouns in
each biography to denote gender. In our use-case, for
the list of 28 professions, we use templates of the form
{pronoun} is a(n) {occupation} to measure the
model’s propensity towards either he/him or she/her pro-
nouns. To increase the robustness of our measurements,
we also include template variations from Bartl, Nissim,
and Gatt (2020), e.g. {pronoun} applied to the
position of {occupation}. For each occupation y
and pronoun g, we compute the model’s probability py,g
for the template. To control for baseline differences for pro-
nouns, we also compute prior probability πy,g for a tem-
plate where only the pronoun is present but the occupation is

masked, e.g., he is a [MASK]. We define our upstream
gender bias metric as the difference in these probabilities:

log
py,she/her

πy,she/her
− log

py,he/him

πy,he/him
(1)

A higher absolute probability gap suggests that a model as-
sociates one gender much more with an occupation, while a
value close to zero implies equal association during masked
language modeling.

Second, we evaluate upstream biases beyond gender,
and for a diverse set of demographic groups. Following
Hutchinson et al. (2020), we rely on sentiment analy-
sis to measure upstream bias. Again, we re-use method-
ology from Steed et al. (2022) and construct templates
of the form {identity} {person} is [MASK]. The
{identity} term consists of about 50 diverse identity
groups such “Muslim”, “Jewish”, “elderly”, “gay” etc.,
taken from Dixon et al. (2018). The original dataset consists
of (a) 130,000 public comments from Wikipedia Talk pages,
annotated for toxicity, which mention these identity groups;
and (b) a synthetic test set to evaluate disparities in toxic-
ity classification. We leverage the identity groups to gener-
ate templates for upstream biases, and the synthetic test set
to evaluate downstream biases later. The {person} part of
the template includes phrases like “people”, “spouse” etc. to
increase the number of templates we measure. We compute
the 20 most likely tokens for [MASK] for each template.
We then use a pre-trained RoBERTa (Liu et al. 2019) senti-
ment classifier2 trained on the TweetEval benchmark (Barbi-
eri et al. 2020) to measure the average negative sentiment for
each identity group’s completed prompts. We focus on neg-
ative sentiment in particular as a proxy for toxicity and neg-
ative associations similar to prior work (Steed et al. 2022;
Hutchinson et al. 2020), and due to its potential of introduc-
ing representational harms (Barocas et al. 2017).

Downstream bias metrics. To evaluate downstream bi-
ases, we fine-tune our pre-trained model on a toxicity classi-
fication task, and compare false positive rates (FPR) across
different identity groups. The FPR of a group g in the data
is defined as

FPRg =
FPg

FPg + TNg
=

FPg

Ng

Here, FPg indicates the false positives in classification,
TNg is true negatives, and Ng are total number of ground
truth negatives (i.e. non-toxic sentences), all for group g
specifically. We focus on false positives since they can result
in concrete allocative harms such as over-moderation and
de-platforming (Jhaver et al. 2021) if such classifiers were to
be used for toxicity classification. Further, prior work (Steed
et al. 2022) has successfully used FPR to quantify down-
stream performance disparities. We use the synthetic test
set from Dixon et al. (2018) as our toxicity classification
task; the dataset contains 89K examples created using tem-
plates of both toxic and non-toxic phrases which are filled in
with the 50 identity terms we also use in our upstream bias

2https://huggingface.co/cardiffnlp/
twitter-roberta-base-sentiment



measurement. Following the original paper, we divide the
synthetic dataset into 75% training and 25% (split equally
into validation and test). To build a classifier, we attach a
sequence classification head to our pre-trained model and
fine-tune for 3 epochs.

Dataset bias metrics. To investigate the provenance of
our observed biases, we measure biases within the pre-
training datasets themselves.

First, to compare gender associations, we analyze
differences in (pronoun, occupation) pair co-
occurrences between the two pre-training corpora using
weighted log odds ratio with a Dirichlet prior (Monroe, Co-
laresi, and Quinn 2008). Log odds ratio is an alternate to
tf-idf and similar word score methods to compare word im-
portance across documents or corpora. In its simplest form,
the log odds of word w in a corpus i where it occurs with fre-
quency f i

w is defined as log Oi
w = log

fi
w

1−fi
w

; the log odds
ratio can then be used to compare word importance between
corpus i and j as:

log
Oi

w

Oj
w

= log
f i
w

1− f i
w

− log
f j
w

1− f j
w

(2)

We use a model-based variant of this measure that is more
robust to low frequencies, specifically the weighted log odds
ratio with a Dirichlet prior; we refer the reader to Monroe,
Colaresi, and Quinn (2008) for a more detailed discussion.

Second, we re-use the sentiment model2 used for up-
stream bias to compare sentiment in the pre-training datasets
themselves. For both CC-100-EN and Wikipedia, we extract
sentences that mention our list of identity groups. We then
use the sentiment model to compute average negative senti-
ment across all sentences that mention a group.

Results
After our pre-training process, we obtain three variants
(Wikipedia, CC-100-EN, and Wikipedia + CC-100-EN) of
each model size (Mini, Small, Medium, Base), i.e. twelve
pre-trained LLMs in total. We first measure upstream biases
in all these models using our two metrics; second, we fine-
tune each model to the downstream task of toxicity clas-
sification to measure downstream biases. Finally, we use
our dataset bias metrics to measure the pre-training dataset
themselves, and investigate the provenance of the biases we
observe. Here, we present our results from these experi-
ments.

Upstream biases can increase with model size
We begin by evaluating gender bias upstream using our im-
plementation log probability bias score (Equation 1). Fig-
ure 1a shows absolute log probability gap between he/him
and she/her pronouns for prompts related to 28 occupa-
tions, for all 12 of our models. Since we use multiple occu-
pations for our metric, we visualize the probability gap as
a distribution across these occupations. Higher values sug-
gest a skew towards either pronoun, while lower values sug-
gest equal likelihood, and therefore better gender represen-
tation. We observe that for models pre-trained on Wikipedia

(green), gender stereotypes slightly increase with model
size—as seen in the increased variance and median. How-
ever, for models pre-trained on CC-100-EN (blue), gender
stereotypes seemingly decrease with model size. For models
pre-trained on the combination (orange), we do not observe
a consistent trend across model sizes. We qualitatively ob-
serve that occupations such as “nurse”, “yoga teacher” and
“software engineer” consistently appear as outliers across
model types.

We then measure upstream bias with our second metric,
which is the average negative sentiment for prompt com-
pletions that relate to 50 identity groups. For each of our
pre-trained models, we compute the average negative senti-
ment for multiple MLM prompts relating to each identity—
Figure 1b shows the distribution of these negative sentiment
scores. Here, we note that as model size increases, we ob-
serve a general upward trend in upstream bias, regardless of
pre-training dataset. We also observe that models pre-trained
on CC-100-EN achieve the highest average negative senti-
ment scores, followed by models pre-trained on the combi-
nation of CC-100-EN and Wikipedia. Models pre-trained on
Wikipedia exhibit comparatively the lowest average nega-
tive sentiment in our experiments. Qualitatively, in case of
models pre-trained on CC-100-EN, we notice frequent abu-
sive mentions (e.g., “stupid”, “sick”, “insane”) on the list
of top words predicted by the model. We also find evidence
of these models generating (unfortunate) sentences such as
“Muslim people are dangerous”. Identities such as “elderly”,
“deaf” and “Muslim” are the most frequent outliers across
model sizes, which aligns with prior work (Dixon et al.
2018; Abid, Farooqi, and Zou 2021). In contrast, for models
pre-trained on Wikipedia, we note MLM completions asso-
ciated with lower negative sentiment such as “wrong”, “in-
jured”, “wounded” etc. These differences illustrate the ef-
fect of both model scale and training data on output toxicity,
suggesting that larger models are more capable of learning
biases from the data—particularly when that data is from an
unmoderated source.

Evolution of bias over the training process. We also
monitor the change in upstream bias (measured via sen-
timent) during the course of the pre-training process. We
checkpoint all models after every 900 training steps dur-
ing the training process, and compute negative sentiment for
each identity group at these checkpoints. Figure 2 shows
how upstream biases grow over time in our experiments.
Each small point shows the average negative sentiment for
an identity group, the large points connected via lines show
the average of average negative sentiment for each model.
Similar to our final measurement in Figure 1b, we no-
tice here too that models trained on CC-100-EN (except
BERT-Mini) have higher upstream bias. Models trained on
Wikipedia consistently have lower upstream bias and inter-
estingly this does not increase or vary over training.

Larger models make more robust downstream
classifiers
Next, we turn our attention to downstream biases of our pre-
trained models. We attach a classification head to each of our
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Figure 1: Upstream biases for each model size and pre-training data type in terms of our bias metrics: (a) log probability
gaps between he/him and she/her pronouns for prompts related to occupations (b) average negative sentiment for masked
language modeling completions related to multiple identity groups.
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Figure 2: Upstream biases (measured via negative sentiment
associations) over the course of pre-training. Models pre-
trained on CC-100 generally result in higher bias scores
compared to models pre-trained on Wikipedia.

models and fine-tune them for the task of toxicity classifica-
tion. Following prior work (Steed et al. 2022; Panda et al.
2022), we use the synthetic toxicity classification data from
Dixon et al. (2018) for this task. We also evaluate an off-
the-shelf BERT (bert-base-uncased) from Hugging-
Face. As described earlier, we evaluate downstream biases
in terms of differences in false positive rate (FPR) for sen-
tences relating to each identity group. A higher FPR for a
group indicates higher downstream biases, since the model
is more likely to falsely flag mentions of that group as toxic,
potentially leading to discriminatory censorship. Ideally, we
would like a model to have low FPR on each identity and
low variance in FPR across all groups.

Figure 3 shows a distribution of FPR for each model size
and pre-training dataset after fine-tuning. We observe that
the median FPR decreases as model size increases, regard-
less of pre-training data; similarly, we note that the variance
of FPR across groups decreases for larger models as well.
This suggests that after fine-tuning, larger models make
more robust classifiers—they make fewer false positive er-
rors for all groups in our experiments.

The decrease in downstream biases with scale can have
a few explanations. First, MLMs are known to use short-
cut heuristics instead of task-specific robust heuristics ( e.g.,
model fine-tuned for Natural Language Inference (NLI) uses
high word overlap with the conclusion, to predict entailment
(McCoy, Pavlick, and Linzen 2019); scale improves these
results (Bhargava, Drozd, and Rogers 2021)). The model
might latch on to certain identities as shortcuts to predict
toxicity. Second, allocative harms are frequently measured
directly using accuracy statistics e.g., FPR in our case. As
scaling laws suggest that test accuracy increases with scale,
downstream bias statistics will improve as well.

However, certain identity groups such as “gay”, “queer”
and “homosexual” consistently show up as outliers in terms
of FPR, regardless of model size or type of pre-training data.
Prior work (Steed et al. 2022) has shown that downstream
disparities are largely explained by the fine-tuning data; our
observed outliers likely appear disproportionately in toxic
sentences, leading to a higher FPR. This suggests that while
larger versions of BERT make more robust downstream clas-
sifiers, they are not able to address biases against extreme
outliers.

Associations in pre-training data influence bias
Finally, we investigate the impact of pre-training data on
the biases we observe. While downstream biases can be ex-



Wiki

CC+Wiki

CC

Tr
ai

ni
ng

 D
at

a

lesbian homosexual gay
lesbian

lesbian gay
lesbian homosexual gay

homosexual
heterosexual homosexual

heterosexual
lesbian homosexual

queer
queer

heterosexual
lesbian homosexual

BERT Size
mini
small
medium
base

0 20 40 60 80 100
Group FPR (%)

of
f-t

he
-s

he
lf

BE
RT lesbian gay

Figure 3: Downstream biases evaluated on toxicity classification data from Dixon et al. (2018). For each model size and type
of pre-training data, false positive rates (FPR) for each identity group are shown. Median FPR and variance of FPRs decreases
as models grow larger, but some outliers remain.

plained as an artifact of the fine-tuning data (Steed et al.
2022), we suspect a much tighter coupling between up-
stream biases and choice of pre-training data.

To understand our observed upstream gender bi-
ases (Figure 1a), we use weighted log odds with a
Dirichlet prior (Monroe, Colaresi, and Quinn 2008)
and compare (pronoun, occupation) pair occur-
rences between CC-100-EN and Wikipedia. Specifi-
cally (in terms of Equation 2), for each occupation
o ∈ {journalist, physician, painter, ...}, and pronoun p ∈
{{he, him, his, himself}, {she, her, hers, herself}} we mea-
sure:

log
OCC-100

o,p

OWiki
o,p

A positive value indicates a co-occurrence is more likely in
CC-100-EN than in Wikipedia, while a negative value means
it is more likely in Wikipedia. Also note that we count fre-
quencies for a set of pronouns and not singular pronouns for
more robust counting. Further, to normalize for variance, we
z-normalize the log odds; using the one-sided critical value
for p = 0.05, we only consider z > 1.645 to be a signif-
icant difference between both datasets. Table 2 shows the
10 occupations with the highest weighted log odds between
CC-100-EN and Wikipedia.

While we observe many differences that are not sig-
nificant, for certain occupations, Wikipedia indeed en-
codes greater gender stereotypes, e.g., “professor” has
significantly higher masculine pronoun associations, and
“model” has higher feminine pronoun associations. Inter-
estingly, “teacher” is the only occupation that has signifi-
cant stereotypical associations in both datasets: masculine
in Wikipedia, feminine in CC-100-EN. One trend, despite

Occupation Pronouns
M F

teacher -3.37* 2.47*
professor -4.14* 1.33
nurse -0.25 2.87*
model -1.00 -1.64*
journalist -0.31 -1.06
painter -1.26 -0.06
physician -1.16 -0.16
composer -1.19 -0.11
attorney -0.56 0.65
photographer -0.53 0.64

Table 2: Weighted log odds (z-normalized) for occupation,
pronoun pairs between CC-100-EN and Wikipedia. M =
{he, him, his, himself}, F = {she, her, hers, herself}. Posi-
tive values indicate skew towards CC-100-EN, negative val-
ues indicate skew towards Wikipedia; p < 0.05 shown in
bold.

lack of significance, is that co-occurrences with masculine
pronouns are overall more common in Wikipedia than CC-
100 (larger negative values in M column). This may be re-
flective of a broader trend on Wikipedia, beyond gendered
stereotypes for specific occupations, where the vast majority
of biographical articles are about men, due to biases in who
is perceived as notable (Tripodi 2023). Conversely, while
large web scrapes like CC-100 are more diverse in overall
topics covered, these might involve more toxic text.

To understand the provenance of our upstream sentiment
biases (Figure 1b), we extract sentences from both CC-100-



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Avg. negative sentiment in CC

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Av

g.
 n

eg
at

iv
e 

se
nt

im
en

t i
n 

W
ik

i
Equal Negative Sentiment

Figure 4: Average negative sentiment for sentences in pre-
training data that mention our studied identity groups. CC-
100-EN (x-axis) almost always encodes more negative sen-
timent.

EN and Wikipedia that mention our list of identity groups,
and re-use our sentiment classifier to measure average neg-
ative sentiment. This allows us to compare whether one
dataset a priori encodes more negative sentiment towards a
group, which could be picked up by a model during training.
Figure 4 shows average negative sentiment for each iden-
tity group in both datasets. We find that CC-100-EN shows
higher negative sentiment for most identity groups compared
to Wikipedia. In fact, with the exception of a few outliers,
CC-100-EN consistently has more negative sentiment. We
suspect that our observed upstream biases are an artifact of
this difference, and that larger models do a better job of pick-
ing up these aspects of the data (e.g., Figure 2).

Limitations
Our approach has multiple limitations. First, while we limit
our analysis to a single model family to reduce variance
in architecture, it limits the ecological validity of our re-
sults. Our results therefore cannot be generalized to all mod-
ern LLM architectures, and instead provide a detailed look
into BERT specifically. Second, compared to state-of-the-
art compute intensive training procedures, our pre-training
process is quite rudimentary. We limit the training process
to only 8000 training steps as a heuristic to upper bound the
amount of compute that each model uses; this is a simplifica-
tion and does not lead to a model as powerful as those avail-
able through model hubs like HuggingFace. Third, while we
make sure to evaluate bias holistically by examining both
upstream and downstream differences, our bias metrics—
such as log probability gaps and sentiment—are not defini-
tive ways of measuring bias. Bias is a complex, socio-
technical, and sometimes ill-defined notion whose meaning
can vary across domains and tasks. While we rely on metrics
from prior work, our measures are prone to the same pitfalls

and limitations in validity that most bias measurement work
in NLP suffers from (Goldfarb-Tarrant et al. 2023).

Concluding Discussion
Our study provides a detailed case study on the interplay of
scale, pre-training data, and bias with a specific focus on
BERT, a widely used LLM. We find evidence that larger
models are able to encode more biases upstream. Impor-
tantly, we observe that larger models, combined with un-
moderated data, can lead to worse results for the task of
masked language modeling. However, larger models can
also produce more robust downstream classifiers after fine-
tuning.

While MLMs like BERT do not represent the state-of-the-
art in the rapidly developing landscape of LLM research,
they remain extremely relevant for several applied natural
language processing problems. Our investigation of bias is
particularly relevant to practitioners who fine-tune embed-
ding models for their tasks. In these applied use-cases, our
results shed light on how scale and training data together
can lead to different kinds of biases. We encourage practi-
tioners to be aware of the biases their training datasets can
introduce, and to actively measure these artifacts during the
development process. On a more general level, our study
highlights the role that training data can play in scaling, es-
pecially as it relates to biased model behavior. Our results
also suggest that mixing in a moderated, high quality data
source (e.g., Wikipedia) with larger datasets (e.g., CC-100,
The Pile (Gao et al. 2020)) might be an approach to alleviate
biases—we leave a full exploration of this direction to future
work.

Our analyses also underscore the limitations that ex-
ist in metrics used to measure bias, which is a nuanced
socio-technical concept, whose meaning changes across
tasks and domains. Negative sentiment and gaps in gender
representation—as used here—are well-scoped ways of ex-
pressing bias that can be useful for different domains. Neg-
ative sentiment, for instance, could be a useful measure of
bias for LLM use in chatbots or auto-complete tools; dif-
ferences in gender likelihood could be useful for measuring
bias in resumé or search ranking, but they are not universal
measures of linguistic bias. As seen in our results, depending
on the choice of bias metric, a measurement of model be-
havior can look quite different. This aligns with prior work
(Goldfarb-Tarrant et al. 2023; Blodgett et al. 2021) which
shows that measuring bias or fairness can be a challenging
undertaking, and it is easy to set up an incompatible met-
ric. Our results highlight the need for identifying the correct
bias metric for each domain, and judging both the data and
the model by that metric.

Ethical Considerations
Our study attempts to measure a social issue with techni-
cal tools, and therefore it relies on some shortcut heuristics
and simplifications that we attempt to make explicit here. In
studying gender disparities, we rely on pronouns and only
focus on he/him and she/her since our metrics are set up as
subtractions. This simplification is not meant to reinforce the



gender binary, and we acknowledge that multiple instances
of log probability gap can be used as well. The list of iden-
tity groups for whom we measure sentiment and downstream
classification disparities is taken from Dixon et al. (2018).
This list has been designed for broad coverage, and is not
necessarily grounded in any harms that have been experi-
enced by these groups.
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